\qquad

8.1 Classifying Polygons

Goal: Describe polygons.

Convex Polygon: a polygon in which no line that contains a side of a polygon passes through the interior of the polygon		
Concave Polygon: a polygon that is not convex. These		
Equilateral: a polygon where all ___ are themselves.		
congruent		
Equiangular: a polygon where all ___ are		
congruent		
Regular: a polygon that is both		

Decide whether the polygon is convex or concave.

Decide whether the polygon is equilateral, equiangular, or regular.

Draw the polygon described.
a) Equilateral but not equiangular
b) Convex and regular
c) Convex but not regular
d) A concave hexagon
e) A convex hexagon

The polygons are regular. Find the value of \mathbf{x}.
a) $x=$ \qquad
b) $x=$ \qquad
c) $x=$ \qquad

8.2 - Discovering the Polygon Interior Angles Theorem

Name	Picture with Diagonals	Number of Sides	Number of Triangles Formed	Sum of Interior Angles
Qriangle				
Penadrilateral				
Hexagon				
Heptagon				
Ontagon				

8.2 Angles in Polygons

Goal: Find the measures of interior and exterior angles of polygons
Polygon Interior Angles Theorem: The sum of the measures of interior angles of a convex polygon with n sides is \qquad

Find the sum of the measures of the interior angles of the polygons below.
a) \qquad
b) \qquad

d) \qquad
e) \qquad
Decagon
Heptagon
f) \qquad
14-gon

Find the sum of the measures of the interior angles, then find $m \angle A$.
a) Sum: \qquad
b) Sum: \qquad
c) Sum: \qquad
$m \angle A=$ \qquad

$m \angle A=$ \qquad

Polygon Exterior Angle Sum Theorem: the sum of the measures of the exterior angles of a convex polygon is

Find the value of x.
a) $x=$ \qquad
b) $x=$ \qquad
c) $x=$ \qquad

Find the measure of an interior angle of the regular polygon.
a) Sum: \qquad
b) Sum: \qquad c) Sum: \qquad
one $\angle=$ \qquad one $\angle=$ \qquad

one $\angle=$ \qquad

8.3 Areas of Rectangles and Squares

Goal: Find the area of rectangles and squares.

Area: the amount of \qquad covered by a figure

Area of a Square	Area of a Rectangle
	$A=$

Find the area. Label your answer.
a) $A=$ \qquad
b) $A=$ \qquad
c) $A=$ \qquad

Sketch the figure and the find its area. Label your answer.
a) A square with side lengths of 4.25 ft .
b) A rectangle with a base of 1.4 in and a height of 2.5 in .

Picture:
Picture:
$A=$ \qquad
\qquad
$A=$
A gives the area of the rectangle. Find the missing side length. Label your answer.
\qquad b) $h=$ \qquad c) $\mathrm{h}=$ \qquad

$A=12 \mathrm{in}^{2}$
$A=81 \mathrm{ft}^{2}$
$A=140 \mathrm{~cm}^{2}$

Find the dimensions of each rectangle.

Rectangle A
$b=$ \qquad $\mathrm{h}=$ \qquad
Rectangle C
b = \qquad $\mathrm{h}=$ \qquad

Rectangle B
$b=$ \qquad

Find the area of the polygon made up of rectangles.
a) $\mathrm{A}=$ \qquad
9 in.

c) $A=$ \qquad

b) $A=$ \qquad

Each figure to the right is a square. Find just the shaded area.
\qquad
$A=$

8.4 Area of Triangles

Goal: Find the area of triangles.
Height of a triangle: the \qquad segment
from a vertex to the line containing the opposite side called the
*The height and the base must make a \qquad angle.
Area of a Triangle

A triangle has a base of 11 and a height of 6 . Label each triangle accordingly.

Find the area of the triangle. Label your answer
a) $A=$ \qquad
b) $A=$ \qquad
c) $A=$ \qquad

A gives the area of the rectangle. Find the missing side length. Label your answer.
a) $h=$ \qquad
b) $\mathrm{b}=$ \qquad
c) $h=$ \qquad

$$
A=15 \mathrm{in} .^{2}
$$

$$
A=126 \mathrm{~cm}^{2}
$$

$$
A=6 \mathrm{ft}^{2}
$$

Use the Pythagorean Theorem to find the missing side, then find the area. Label your answer.
a) $b=$ \qquad
b) $\mathrm{a}=$ \qquad
c) $x=$ \qquad
$A=$ \qquad
$A=$ \qquad
$A=$ \qquad

Find the area of each compound shape.
a) $A=$ \qquad b) $A=$ \qquad

c) $A=$ \qquad d) $A=$ \qquad

8.5 Area of Parallelograms

Goal: Find the area of parallelograms.

Area of a Parallelogram	Area of a Rhombus
A	

Find the area of the parallelogram.
a) $\mathrm{A}=$ \qquad
b) $A=$ \qquad
c) $A=$ \qquad

A gives the area of the parallelogram. Find the missing measure.
a) \qquad

$$
A=63 \mathrm{~m}^{2}
$$

b) \qquad c) \qquad
$A=55 \mathrm{~cm}^{2}$

Find the area of the rhombus.
a) $\mathrm{A}=$ \qquad b) $A=$ \qquad

c) $A=$ \qquad

Find the area of each parallelogram.
a) $A=$ \qquad
b) $\mathrm{A}=$ \qquad c) $A=$ \qquad

Find the area of each compound shape.

a) $\mathrm{A}=$ \qquad

d) $\mathrm{A}=$ \qquad

e) $\mathrm{A}=$ \qquad

8.6 Area of Trapezoids

Goal: Find the area of trapezoids.

Complete each statement with always, sometimes, or never.

The bases of the trapezoid are \qquad parallel.

The bases of the trapezoid are \qquad congruent.

The bases of a trapezoid are \qquad sides of the trapezoid.

The height of a trapezoid is \qquad a side of the trapezoid.

The height of a trapezoid is \qquad perpendicular to both bases.

Find the area of the trapezoid.
a) $\mathrm{A}=$ \qquad
b) $\mathrm{A}=$ \qquad
c) $A=$ \qquad

A gives the area of the trapezoid. Find the missing measure.
a) \qquad

b) \qquad

c) \qquad
$A=342 \mathrm{yd}^{2}$

Find the height of the trapezoid using the Pythagorean Theorem. Then find the area of the trapezoid.
a) $h=$ \qquad
b) $h=$ \qquad
$A=$ \qquad
A = \qquad

Find the area of the composite figures.
a) $\mathrm{A}=$ \qquad

b) $A=$ \qquad

8.7 Circumference and Area of Circles

Goal: Find the circumference and area of circles.
Circle: a set of all points in a plane that are the same \qquad from a given point, called the
\qquad of the circle.

Radius: the distance from the \qquad to a point on the circle	
Diameter: the distance ___ the circle, through the center	
Circumference: the distance ___ the circle	
Central angle: an angle whose \qquad is the center of the circle	
Sector: a region of a circle determined by two \qquad and a part of the circle	

Circumference of a Circle	Area of a Circle
$\mathrm{C}=\ldots$ or $\mathrm{C}=\ldots$	$\mathrm{A}=\ldots$

Find the circumference of the circle. The find the area. Round your answer to the nearest tenth.
a) $\mathrm{C}=$ \qquad
b) $\mathrm{C}=$ \qquad
c) $\mathrm{C}=$ \qquad
$\mathrm{A}=$ \qquad

A = \qquad

A = \qquad

The area of the circle is given. Find the radius.
a) $r=$ \qquad
b) $r=$ \qquad
c) $r=$ \qquad $A=50 \mathrm{~cm}^{2}$
$A=452$ in 2
$A=28 f t^{2}$

Find the area of the shaded region.

Area of Rectangle: \qquad
Area of Circle: \qquad
Area of Shaded: \qquad
b)

Area of Rectangle: \qquad
Area of Circle: \qquad
Area of Shaded: \qquad

Area of a Sector	
	$=$

Find the area of the sector. Round your answer to the nearest tenth.
a) $A=$ \qquad
b) $A=$ \qquad
c) $A=$ \qquad

