\qquad

7.1 Ratio and Proportion

Goal: Use ratios and proportions.
Ratio: a comparison of a number a and a nonzero number b using \qquad
Proportion: an equation that states that two ratios are \qquad
Means: the numbers b and c in the proportion \qquad
Extremes: the numbers a and d in the proportion \qquad

Simplify the ratio.

a) 6 days: 15 days
b) $\frac{2 f t}{2 y d}$
c) $\frac{3 f t}{18 \mathrm{in}}$
d) $600 \mathrm{ft}: 1 \mathrm{mi}$
e) $\frac{8 y d}{2 f t}$
f) $\frac{4 \text { weeks }}{6 \text { days }}$

Cross Product Property

In a proportion, the product of the extremes is equal to the product of the means.

$$
\text { If } \frac{a}{b}=\frac{c}{d}, \text { then }
$$

\qquad $=$ \qquad

Solve each proportion.
a) $\frac{x}{2}=\frac{7}{14}$
b) $\frac{5}{7}=\frac{y+1}{21}$
c) $\frac{27}{x-5}=\frac{3}{2}$
d) $\frac{3}{2}=\frac{9}{x-1}$
e) $\frac{m+2}{5}=\frac{14}{10}$
f) $\frac{39}{72}=\frac{x}{24}$

Find each ratio.

$A B: D E$ \qquad $B C: D E$ \qquad $E F: C D$ \qquad $B D: A E _$

The perimeter of a rectangle is 80 feet. The ratio of the length to the width of $7: 3$. Find the length and the width.

Length: \qquad Width: \qquad

Teresa is maintaining a camp fire. She can keep the fire burning for 4 hours with 6 logs. How many logs does Teresa need to maintain for the fire for 18 hours?

Ms. Blaseg has a candle that is 14 cm tall which burns for 8 hours before going out. How long would a 21 cm tall candle for burn for?

7.2 Similar Polygons

Goal: Identify similar polygons.
Similar Polygons: two polygons whose corresponding angles are \qquad and whose corresponding side lengths are \qquad . They are the same \qquad but different

Scale Factor: in similar polygons, the ratio of the lengths of two \qquad

Perimeters of Similar Polygons
If two polygons are similar, then the ratio of their__ is equal to the ratio of their
corresponding side lengths.

Identify all congruent angles and sides. Then find the scale factor of the left figure to the right figure. $\Delta P N M \sim \Delta K J L$

Congruent angles: \qquad \cong \qquad
\qquad \cong \qquad
\qquad \cong \qquad

Ratio of Corresponding Sides: \qquad $=$ \qquad $=$ \qquad

$\Delta L M N \sim \Delta R S T$
Congruent angles: \qquad \cong \qquad
\qquad \cong \qquad
\qquad \cong \qquad

Ratio of Corresponding Sides: \qquad $=$ \qquad $=$ \qquad

Scale Factor: \qquad

Determine whether the polygons are similar by checking the ratio of all sides. If they are similar, find the scale factor of figure A to figure B.
a) Similar?
Scale Factor: \qquad b) Similar? \qquad Scale Factor: \qquad

c) Similar? \qquad Scale Factor: \qquad

d) Similar? \qquad Scale Factor: \qquad

The two polygons are similar. Write a proportion to find the value of each variable.
a) $x=$ \qquad

b) $x=$ \qquad
c) $x=$

d) $z=$ \qquad

7.3 Showing Triangles Similar: AA

Goal: Show that two triangles are similar using the AA Similarity Postulate.

Angle-Angle Similarity Postulate (AA)	
If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are \qquad If \angle \qquad $\cong \angle$ \qquad and \angle \qquad $\cong \angle$ \qquad then Δ \qquad $\cong \Delta$ \qquad	

Determine if the triangles are similar. If so, write a similarity statement.
a) Similar?: \qquad b) Similar?: \qquad
Postulate: \qquad
Statement: \qquad ~ \qquad
Postulate: \qquad
Statement: \qquad ~ \qquad

c) Similar?: \qquad d) Similar?: \qquad
Postulate: \qquad
Statement: \qquad ~ \qquad

e) Similar?: \qquad f) Similar?: \qquad
Postulate: \qquad
Statement: \qquad ~ \qquad
Postulate: \qquad
Statement: \qquad ~ \qquad

Write the similarity statement for the triangles. Then find the value of the variable.
a) Statement: \qquad \sim \qquad b) Statement: \qquad \sim \qquad
$x=$ \qquad

c) Statement: \qquad \sim \qquad

$$
x=
$$

d) Statement: \qquad \sim \qquad

7.4 Showing Triangles Similar: SSS and SAS

Goal: Show that two triangles are similar using the SSS and SAS Similarity Postulates.

Determine whether the triangles are similar. If they are similar, state why and write a similarity statement.
a) Similar?: \qquad Postulate: \qquad b) Similar?: \qquad Postulate: \qquad
Statement: \qquad \sim \qquad Statement: \qquad ~ \qquad

c) Similar?: \qquad Postulate: \qquad d) Similar?: \qquad Postulate: \qquad
Statement: \qquad \sim \qquad Statement: \qquad \sim \qquad

e) Similar?: \qquad Postulate: \qquad f) Similar?: \qquad Postulate: \qquad
Statement: \qquad ~ \qquad Statement: \qquad ~ \qquad

h) Similar?: \qquad Postulate: \qquad
Statement: \qquad ~ \qquad

Determine whether the two triangles are similar by SSS. If they are similar, find the scale factor of Triangle B to Triangle A.
a) Similar? \qquad Scale Factor:

\qquad b) Similar? \qquad Scale Factor: \qquad

c) Similar? \qquad Scale Factor: \qquad d) Similar? ___ Scale Factor: \qquad

7.5 Proportions and Similar Triangles

Goal: Use the Triangle Proportionality Theorem and its converse.
Midsegment of a triangle: a segment that connects the \qquad of two sides of a triangle

Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides
\qquad

In $\triangle Q R S$, if $\bar{T} \bar{U} \| \overline{Q S}$ then $\frac{R T}{Q T}=$ \qquad

Use the Triangle Proportionality Theorem to find the value of the variable.
a) $x=$ \qquad b) $x=$ \qquad c) $y=$ \qquad

d) $y=$ \qquad
e) $x=$ \qquad

| Converse of the Triangle Proportionality Theorem |
| :--- | :--- |
| If a line divides two sides of a triangle proportionally, then is it ____ |
| In $\triangle Q R S$, if $\frac{R T}{T Q}$ and $\frac{R U}{U S}$, then______ to the third side. |

Given the diagram, determine whether $\bar{B} \bar{E}$ is parallel to $\bar{C} \bar{D}$. Explain.
a) \qquad
b) \qquad
c) \qquad

Midsegment Theorem
The segment connecting the midpoints of two sides of a triangle is
In $\triangle A B C$, if $C D=D A$ and $C E=E B$, then__ \quad and $D E=$

Find the value of each variable.
a) $x=$ \qquad b) $x=$ \qquad

c) $y=$ \qquad d) $x=$ \qquad

Complete each statement.

$\overline{A C} \|$ \qquad
$\overline{B C} \|$ \qquad
If $\mathrm{AB}=32$, then $\mathrm{MN}=$ \qquad
If $\mathrm{LM}=17$, then $\mathrm{BC}=$ \qquad
If $\mathrm{BL}=4.5$, then $\mathrm{MN}=$ \qquad

7.6 Dilations

Goal: Identify dilations and scale factors.
Dilation: a transformation that changes the \qquad of a figure

Reduction: a dilation in which the image is \qquad than the original figure

Enlargement: a dilation in which the image is \qquad than the original figure

Tell whether the dilation is a reduction or an enlargement.
a) \qquad b) \qquad

c) \qquad d) \qquad

To find the scale factor of a dilation, simplify the ratio: \qquad

Determine if the dilation is an enlargement or reduction. Then find the scale factor of the dilation.
a) \qquad
b) \qquad
Scale Factor: \qquad Scale Factor: \qquad

c)

Scale Factor: \qquad

d) \qquad
Scale Factor: \qquad

Find the value of the variable.
a) $x=$ \qquad
C
b) $x=$ \qquad
c) $x=$ \qquad d) $n=$ \qquad

e) $m=$ \qquad

f) $x=$ \qquad

7.6 Extension - Dilations on the Coordinate Plane

Goal: Graph dilations on the coordinate plane.

Dilate: to \qquad or \qquad a figure

Scale Factor: determines how much a figure is being enlarged or reduced.
*A scale factor greater than one \qquad a figure

* A scale factor between 0 and 1 \qquad a figure

Identify the coordinates of the pre-image. Then use the scale factor to graph and identify the coordinates of the image.
a) Scale Factor: 2

A: \qquad A^{\prime} : \qquad

B: \qquad B^{\prime} : \qquad

C: \qquad C^{\prime} : \qquad

b) Scale Factor: $1 / 2$

P: \qquad P^{\prime} : \qquad

Q: \qquad Q': \qquad

R: \qquad R': \qquad

c) Scale Factor: 1.5
G: \qquad
G': \qquad
H : \qquad H^{\prime} : \qquad
\qquad J': \qquad
K: \qquad
K^{\prime} : \qquad
d) Scale Factor: $3 / 4$

E: \qquad E^{\prime} : \qquad
F: \qquad
F^{\prime} : \qquad

G: \qquad G': \qquad

H: \qquad H^{\prime} : \qquad

