Chapter 6 Notes – Quadrilaterals
Basic Geometry

Name_

6.1 Polygons

Polygon : a plane figure that is formed	d by or more	Classi	fying Polygons by Sides
segments called . Each	side intersects	Number of Sides	Name
exactly two other sides at each of its	endnoints	3	
	enuponno.	4	
Vertex of a polygon: the	of a side	5	
Diagonal of a polygon: a cogmont the	at joins two	6	
		7	
	a polygon	8	
		9	
		10	
		n	
Use polygon ABCD at the right.			
	A		
Name all vertices:			
Name all sides:		Ζ ^в	
· · · · · · · · · · · · · · · · · · ·			
Name all diagonals:	<i>D</i>	C	
Determine if each figure is a polygor	b)	its sides. If not, expl	ain your reasoning.
d)	e)		f)
h)	i)		j)

Draw all diagonals for the figures below.

Quadrilateral Interior Angles Theorem: The sum of	12
the measures of the angles in a quadrilateral is	
	+++=

Find $m \angle A$.

Find the value of x.

6.2 Properties of Parallelograms

Goal: Use properties of parallelograms to find missing angles and lengths.

Parallelogram: a ______ in which both pairs of opposite sides are parallel

Properties of Parallelograms Opposite sides are ______. . Opposite sides are _____ Opposite angles are ______ Consecutive angles are _____ Diagonals _____ each other.

Use properties of parallelogram to find the values of x and y.

6.3 Showing Quadrilaterals are Parallelograms

Goal: Use properties to determine whether a quadrilateral is a parallelogram

If both pairs of opposite sides of a quadrilateral are	If ≅ and
, then the quadrilateral is a	$ _ _ \cong _ _$, then $ / / / / / / / / / / / / / / / / / / $
	PQRS is a parallelogram $P_{P} = \frac{1}{1 + \frac{1}{2}} \frac{1}{s}$
If both pairs of opposite angles of a quadrilateral are	If \cong and $a_{\mathcal{P}} \xrightarrow{w} \nabla^{R}$
, then the quadrilateral is a	$ _ _ \cong _$, then $ _ \land \land$
·	PQRS is a parallelogram
If an angle of a quadrilateral isto	If + = $q_{x^{\circ}} \rightarrow q_{y^{\circ}} R$
both of its consecutive angles, then the quadrilateral Is a	and + = x^{*}
parallelogram	then PQRS is a parallelogram
If the diagonals of a quadrilateral	If \cong and $a \xrightarrow{R} R$
, then the quadrilateral is a	\simeq , then P
parallelogram.	PQRS is a parallelogram

Tell whether each quadrilateral is a parallelogram. Explain your reasoning.

If a quadrilateral is a parallelogram, then the opposite sides are parallel. On coordinate plane, two lines are parallel if they have the same ______.

Graph each quadrilateral, then use slope to determine if it is a parallelogram.

a) A(2,1) B(5,2) C(5,7) D(2,6)

 Slope AB:
 Slope CD:

 Slope BC:
 Slope AD:

Parallelogram? _____

									ν									
									Γ									
																		-
		-	-	-	-	-	-	-			-			-	-	-		-
-		-	-	-	-	-	-	-		-	-	-	-	-	-		-	x
◄		_		_			_	_										€
																		-
	L	L	L	L	L				 ·									

b) R(-5,7) S(2,6) T(4,-1) V(-4,0)

Slope RS: _____ Slope TV: _____

Slope ST: _____ Slope RV: _____

Parallelogram? _____

6.4 Rhombuses, Rectangles, and Squares

Goal: Use properties of special types of parallelograms

Use the information in the diagram to name the special quadrilateral.

Find the value of x in each rhombus and rectangle below.

a) x = _____ rhombus ABCD

b) x = _____ rhombus EFGH

JKLM is a rhombus.

d) x = _____

rectangle *EFGH*, EG = 48, HF = 6x

e) x = ____

rectangle WXYZ, XZ = 37, WY = 5x + 2

ABCD has the properties shown in the picture. Is the statement true or false? Explain.

- _____ ABCD is a rhombus
- _____ ABCD is a parallelogram
- _____ ABCD is a rectangle
- _____ The diagonals are congruent

6.5 Trapezoids

Goal: Use properties of trapezoid.

EFGH is a trapezoid. Find the missing angle measures.

ABCD is an isosceles trapezoid. Find the missing angle measures.

a) x = _____ y = _____

isosceles trapezoid JKLM

Find the length of midsegment AB. Remember that the midsegment is the average of the two bases.

MD is the midsegment of each trapezoid. Solve for x.

6.6 Reasoning About Special Quadrilaterals

Goal: Identify special quadrilaterals based on limited information

The Quadrila	teral Family Tree	
$\int_{\Gamma} \int_{\Gamma}$		
A square is always a,,		, and
A rectangle is always a	and sometimes a	
A rhombus is always a	and sometimes a	·
A parallelogram is always a	·	
An isosceles trapezoid is always a	and a	A trapezoid is

Determine whether the quadrilateral is a trapezoid, isosceles trapezoid, parallelogram, rectangle, rhombus, or square.

Are you given enough information to conclude that the figure is the given type of special quadrilateral? Explain your reasoning.

