\qquad ANSWER KEY Basic Geometry
5.1 Congruence and Triangles

Goal: Classify triangles by their sides and by their measures.
Corresponding Parts: the sides and angles that are the same when two triangles have exactly the same
\qquad and \qquad shape

Congruent Figures: figures are congruent if all pairs of corresponding \qquad sides and corresponding angles are congruent

The two triangles are congruent. Identify all congruent parts and write a congruence statement.

Corresponding Angles:
\qquad and \qquad $\angle R$ \qquad and \qquad $\angle P$ \qquad and LQ

Corresponding Sides:
\qquad and \qquad $\overline{M N}$ and $\overline{(\bar{R}}$ \qquad $\overline{L N}$ and \qquad PR

Congruence Statement: $\Delta N L M \cong \triangle R P Q$

Corresponding Angles:
$\angle K$ and $\angle Z$ \qquad and \qquad $\angle J$ and \qquad sLy

Corresponding Sides:
\qquad XX化, and \qquad xt灭 and \qquad oz * \qquad

In the triangles below, $\triangle A B C \cong \triangle D E F$. Find the indicated measures.
$D E=22 \quad D F=17$
$\mathrm{BC}=\underline{19} m \angle D=\underline{85^{\circ}} m \angle E=\underline{30^{\circ}}$
$m \angle C=\underline{6 S^{\circ}} m \angle F=\underline{65^{\circ}}$

In the triangles below, $\triangle A B C \cong \triangle D E F$. Find the indicated measures.
$A B=6 \quad B C=4 \quad 3 \angle D=30^{\circ}$
$\mathrm{BC}=\underline{5} \quad m \angle D=27^{\circ} \quad m \angle F=\underline{86^{\circ}}$ $m \angle F=\underline{S 0^{\circ}} m \angle B=\underline{100^{\circ}} m \angle E=\underline{100^{\circ}}$
$A B=\underline{11} m \angle B=67^{\circ} m \angle E=\underline{6}{ }^{6}$

Determine whether the triangles are congruent. If so, write a congruence statement.
a) Congruent? Yes
b) Congruent? Yes

Statement: $\triangle E G F \cong \triangle H G F$
Statement: $\Delta J K L \cong \Delta L M N$

d) Congruent?

statement: \triangle DEF $\cong \triangle G E F$

Statement: Δ \qquad $\cong \Delta$ \qquad

5.2 SSS and SAS

Goal: Show triangles are congruent using SSS and SAS.

Does the diagram give enough information to use the SSS congruence postulate?

Yes

NO

No
yes

Does the diagram give enough information to use the SAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.
a. Congruent? \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

d. Congruent? \qquad Yes

Postulate: \qquad
$\Delta W X Z \cong \Delta Y \times Z$

b. Congruent? \qquad Yes

$\triangle K G H \cong \triangle H J K$
 Alt. Int. L's
e. Congruent? \qquad
Postulate:

c. Congruent? \qquad Yes

Postulate: \qquad SSS

$$
\triangle M Q P \cong \triangle P N M
$$

5.3 ASA and AAS

Goal: Show triangles are congruent using ASA and AAS.

| Angle-Side-Angle (ASA) Congruent Postulate: If two |
| :--- | :--- |
| angles and the included_Side |
| are congruent to two angles one triangle |
| of a second triangle, then the two triangles are |
| Congruluded side |

Use $\triangle T G L$ shown. Complete the table.

Angles	included side
$\angle T$ and $\angle \mathrm{G}$	$\overline{T G}$
$\angle G$ and $\angle L$	\bar{G}
$\angle T$ and $\angle L$	$\overline{T L}$

Draw any $\triangle A B C$ in the space below. Complete the table.

Angles	Non-lncluded Sides
$\angle A$ and $\angle B$	$\overline{A C}$
$\angle B$ and $B C$	
$\angle C$	$\overline{A C}$
and $A B$	
$\angle A$ and $\angle C$	$\overline{A B}$ and $\overline{C B}$

Does the diagram give enough information to use the ASA congruence postulate?

Does the diagram give enough information to use the AAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.
a. Congruent? YeS
Postulate: \qquad
b. Congruent? Yes
Postulate: $A A S$
$\triangle A B C \cong \triangle D B C$
c. Congruent? Yes
Postulate: ASA
$\triangle P Q R \cong \triangle T S M$

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
e. Congruent?

Postulate:

$\Delta W X V \cong \Delta Z V$

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

5.4 Hypotenuse Leg Congruence Theorem: HL

Goal: Use the HL Congruence Theorem to prove triangles congruent.
Hypotenuse-Leg Theorem: If the hypotenuse and a leg of a \qquad right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are \qquad congruent

$\mathrm{H} \overline{\mathrm{AC}} \cong \overline{\mathrm{DF}}$, and
L $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

Does the diagram give enough information to use the HL congruence theorem?

Yes
$\overline{Q S}$ bisects $\overline{R T}$.
 yes

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use.
a. Congruent? \qquad yes
Postulate: \qquad HL
b. Congruent? \qquad No

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

c. Congruent?

Postulate: SSS or HL or SAS

$$
\Delta M J K \cong \Delta K L M
$$

d. Congruent?

Postulate: HL
$\triangle A B C \cong \triangle D G F$

g. congruent? Yes

$\Delta \underline{W} \cong Y \cong \Delta Z Y$

e. congruent? Yes

Postulate: ASA
$\Delta V W X \cong \Delta Z V X$

n. Corguene Yes

Postulate: SAS
$\triangle F G E \cong \triangle, ~ G H$

f. Congruent: Yes

Postulate: AAS
$\Delta _J K M \cong \triangle L M K$

i. congruent? Y PS

Postulate: $H \mathrm{H}$ $\triangle S P R \cong \triangle$ PR

5.7 Reflections and Symmetry

Goal: Identify and use reflections and lines of symmetry

Reflection: a transformation that creates a
\qquad image. The original figure is reflected in a line that is called the line of reflection.

Properties of Reflections

1. The reflected image is Congruent to the original figure.
2. The orientation of the reflected image is \qquad —.
3. The line of reflection is the perpendicular bisector of the segments joining the corresponding points.

Draw the reflection of the letter E in the line k .
五

Tell whether the figures are reflections.

Tell whether the ligures are reflections. If they are reflections, name the line of reflection.

Not a reflection

Yes $\rightarrow x$-axis

$$
y e s \rightarrow y \text {-axis }
$$

]Line of symmetry: a line that allows a figure to be reflected onto itself by a reflection in the line.

Determine the number of lines of symmetry of each figure.

Reflect the triangle across the x-axis. Find the coordinates of the pre-image and image.

$A \frac{(1,4)}{B(2,1)} \quad A^{\prime} \frac{(1,-4)}{B^{\prime}(2,-1)}$
C $(1,1)$
$C^{\prime}(1,-1)$

* y-Coordinates switch signs*

Reflect the figure across the y-axis. Find the coordinates of the pre-image and image.
H $(-2,3)$ \qquad
$Q \underline{(-2,1)}$
$a^{\prime}(2,1)$
$P(-3,-2)$
$L(0,2)$
$P^{\prime} \frac{(3,-2)}{L^{\prime}(0,2)}$

