\qquad

5.1 Congruence and Triangles

Goal: Classify triangles by their sides and by their measures.
Corresponding Parts: the sides and angles that are the same when two triangles have exactly the same
\qquad and \qquad

Congruent Figures: figures are congruent if all pairs of corresponding \qquad and corresponding
\qquad are congruent

The two triangles are congruent. Identify all congruent parts and write a congruence statement.

Corresponding Angles:

\qquad and \qquad
\qquad and \qquad
\qquad and \qquad

Corresponding Sides:
\qquad and \qquad
\qquad and \qquad
\qquad and \qquad

Congruence Statement: Δ \qquad $\cong \Delta$ \qquad

Corresponding Angles:
\qquad and \qquad
\qquad and \qquad
\qquad and \qquad

Corresponding Sides:

\qquad and \qquad
\qquad and \qquad
\qquad and \qquad

Congruence Statement: Δ \qquad $\cong \Delta$ \qquad

In the triangles below, $\triangle A B C \cong \triangle D E F$. Find the indicated measures.
$D E=$ \qquad $D F=$ \qquad $B C=$ \qquad $m \angle D=$ \qquad $m \angle E=$ \qquad

$m \angle C=$ \qquad $m \angle F=$ \qquad

In the triangles below, $\triangle A B C \cong \triangle D E F$. Find the indicated measures.
$A B=$ \qquad $B C=$ \qquad $m \angle D=$ \qquad $B C=$ \qquad $m \angle D=$ \qquad $m \angle F=$ \qquad $m \angle F=$ \qquad $m \angle B=$ \qquad $m \angle E=$ \qquad
$A B=$ \qquad $m \angle B=$ \qquad $m \angle E=$ \qquad

Determine whether the triangles are congruent. If so, write a congruence statement.
a) Congruent?
b) Congruent? \qquad
Statement: Δ \qquad $\cong \Delta$ \qquad
Statement: Δ \qquad $\cong \Delta$ \qquad

c) Congruent? \qquad d) Congruent? \qquad
Statement: Δ \qquad $\cong \Delta$ \qquad

Statement: Δ \qquad $\cong \Delta$ \qquad

5.2 SSS and SAS

Goal: Show triangles are congruent using SSS and SAS.

Side-Side-Side (SSS) Congruent Postulate: If three \qquad of one triangles are congruent to three \qquad of a second triangle, then the two triangles are \qquad	
Side-Angle-Side (SAS) Congruent Postulate: If two sides and the included angle of one triangle are congruent to two sides and the \qquad angle of a second triangle, then the triangles are	If Side $\overline{P Q} \cong \overline{W X}$, and Angle $\angle Q \cong \angle X$, and Side $\quad \overline{Q R} \cong \overline{X Y}$, then $\triangle P Q R \cong \triangle$

Does the diagram give enough information to use the SSS congruence postulate?

Does the diagram give enough information to use the SAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.
a. Congruent? _______

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

d. Congruent? \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

b. Congruent? \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$

e. Congruent? \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
c. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
f. Congruent? \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

5.3 ASA and AAS

Goal: Show triangles are congruent using ASA and AAS.

Angle-Side-Angle (ASA) Congruent Postulate: If two angles and the included \qquad of one triangle are congruent to two \qquad the included side of a second triangle, then the two triangles are	
Angle-Angle-Side (AAS) Congruent Postulate: If two \qquad and the non-included side of one triangle are congruent to two angles and the corresponding nonincluded \qquad of a second triangle, then the two triangles are \qquad	

Use $\triangle T G L$ shown. Complete the table.
Draw any $\triangle A B C$ in the space below. Complete the table.

Angles	Included Side
$\angle T$ and $\angle G$	
$\angle G$ and $\angle L$	
$\angle T$ and $\angle L$	

Angles	Non-Included Sides
$\angle A$ and $\angle B$	and
$\angle B$ and $\angle C$	and
$\angle A$ and $\angle C$	and

Does the diagram give enough information to use the ASA congruence postulate?

Does the diagram give enough information to use the AAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.
a. Congruent? \qquad
b. Congruent? \qquad c. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

d. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
e. Congruent? \qquad

Postulate: \qquad
Δ \qquad

$$
\cong \Delta_{-}
$$

\qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

f. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

5.4 Hypotenuse Leg Congruence Theorem: HL

Goal: Use the HL Congruence Theorem to prove triangles congruent.

Hypotenuse-Leg Theorem: If the hypotenuse and a leg of a \qquad triangle are congruent to the hypotenuse and a leg of a second \qquad triangle, then the two triangles are \qquad	H $\overline{A C} \cong \overline{D F}$, and $L \overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle$ \qquad

Does the diagram give enough information to use the HL congruence theorem?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use.
a. Congruent? \qquad
b. Congruent? \qquad c. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
d. Congruent? \qquad
Postulate: \qquad
$\Delta L^{Z} \cong \Delta^{Z}$
\qquad
\qquad
e. Congruent? \qquad
Postulate: \qquad
Δ \qquad
f. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

g. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
h. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad
i. Congruent? \qquad
Postulate: \qquad
Δ \qquad $\cong \Delta$ \qquad

5.7 Reflections and Symmetry

Goal: Identify and use reflections and lines of symmetry

Reflection: a transformation that creates a

\qquad image. The original figure is
reflected in a line that is called the line of reflection.

Properties of Reflections

1. The reflected image is \qquad to the original figure.
2. The orientation of the reflected image is \qquad _.
3. The line of reflection is the
of the segments joining
the corresponding points.

Draw the reflection of the letter E in the line k.

Tell whether the figures are reflections.

Tell whether the ligures are reflections. If they are reflections, name the line of reflection.

Line of symmetry: a line that allows a figure to be reflected onto itself by a reflection in the line.

Determine the number of lines of symmetry of each figure.

Reflect the triangle across the x-axis. Find the coordinates of the pre-image and image.
A \qquad
A^{\prime} \qquad
B \qquad
B' \qquad
C \qquad
C^{\prime} \qquad

Reflect the figure across the y-axis. Find the coordinates of the pre-image and image.
\qquad H^{\prime} \qquad
\qquad
P \qquad
\qquad
P^{\prime} \qquad

L \qquad L' \qquad

