5.1 Congruence and Triangles

Name___

Goal: C	Classify triangles b	y their sides and by t	heir measures.	
Corresponding Parts: the sides	and angles that a	re the same when two	o triangles have exactly	the same
and				
Congruent Figures: figures are	congruent if all pa	irs of corresponding _	and corre	esponding
are congruent				
The two triangles are congrue	nt. Identify all con	gruent parts and writ	te a congruence statem	ent.
Corresponding Angles:				P
and	and	and	-b-+	
Corresponding Sides:				
and	and	and		
<u>Congruence Statement</u> : Δ	≅Δ			
Corresponding Angles:				A
and	and	and		. ×∠, ‡
Corresponding Sides:			ĸĽ	\sim_Z
and	and	and		
<u>Congruence Statement</u> : Δ	≅ Δ			

In the triangles below, $\triangle ABC \cong \triangle DEF$. Find the indicated measures.

In the triangles below, $\triangle ABC \cong \triangle DEF$. Find the indicated measures.

Determine whether the triangles are congruent. If so, write a congruence statement.

Statement: Δ _____ $\cong \Delta$ _____

Statement: Δ $\cong \Delta$

c) Congruent? _____

2

5.2 SSS and SAS

Goal: Show triangles are congruent using SSS and SAS.

Does the diagram give enough information to use the SSS congruence postulate?

Does the diagram give enough information to use the SAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.

5.3 ASA and AAS

Goal: Show triangles are congruent using ASA and AAS.

Use \triangle TGL shown. Complete the table.

Angles	Included Side
∠T and ∠G	
∠G and ∠L	
$\angle T$ and $\angle L$	

Draw any $\triangle ABC$ in the space below. Complete the table.	Draw a	anv $\triangle ABC$) in the	space b	below.	Complete	the	table.
--	--------	---------------------	----------	---------	--------	----------	-----	--------

Angles	Non-Included Sides	
∠A and ∠B	and	
∠B and ∠C	and	
∠A and ∠C	and	

Does the diagram give enough information to use the ASA congruence postulate?

Does the diagram give enough information to use the AAS congruence postulate?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use and write a congruence statement.

d. Congrue	nt?
Postulate:	
Δ	$\cong \Delta$

5.4 Hypotenuse Leg Congruence Theorem: HL

Goal: Use the HL Congruence Theorem to prove triangles congruent.

Does the diagram give enough information to use the HL congruence theorem?

Decide if there is enough information is given to show that the triangles are congruent. If so, tell which congruence postulate you would use.

a. Congruent? _____

b. Congruent? _____

c. Congruent? _____

Postulate:

Postulate: _____

 $\Delta____\cong \Delta_____$

5.7 Reflections and Symmetry

Goal: Identify and use reflections and lines of symmetry

Reflection: a transformation that creates a

_____ image. The original figure is

reflected in a line that is called the line of

reflection.

Draw the reflection of the letter E in the line k.

C			
	• •		
	-	1	

the corresponding points.

Tell whether the figures are reflections.

Tell whether the ligures are reflections. If they are reflections, name the line of reflection.

Line of symmetry: a line that allows a figure to be reflected onto itself by a reflection in the line.

Determine the number of lines of symmetry of each figure.

Reflect the triangle across the x-axis. Find the coordinates of the pre-image and image.

В_____ В'_____

C _____ C' _____

Reflect the figure across the y-axis. Find the coordinates of the pre-image and image.

Q_____ Q'____

L_____ L'____

