\qquad

2.1 Segment Bisectors

Goal: Bisect a segment. Find the coordinates of the midpoint of a segment.
Midpoint: A point that divides a segment into \qquad

Segment Bisector: a segment, ray, line, or plane that intersects a segment at the \qquad

Bisect: to divide into \qquad or to \qquad

	is the midpoint of
	is a bisector of

Example 1: M is the midpoint of $\overline{A B}$. Find AM and MB .

$A M=$ \qquad $\mathrm{MB}=$ \qquad

Example 2: P is the midpoint of $\overline{R S}$. Find PS and RS .

PS = \qquad RS = \qquad

How is example 1 different from example 2?
a) $D E=$ \qquad EF = \qquad
b) $\mathrm{NO}=$ \qquad $\mathrm{MO}=$

\qquad

c) S

d) $\mathrm{CM}=$ \qquad
$\mathrm{MD}=$ \qquad

The Midpoint Formula	
The coordinates of the midpoint are the	
y-coordinates of the endpoints.	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Plot the coordinates, then use the midpoint formula to find the coordinates of the midpoint.
a) $(1,2)$ and $(7,4)$

Midpoint: \qquad

b) $(0,-2)$ and $(4,0)$

Midpoint: \qquad

c) $(-2,3)$ and $(5,-1)$

Midpoint: \qquad

d) $(-1,2)$ and $(-4,1)$

Midpoint: \qquad

2.2 Angle Bisectors

Goal: Use properties of angle bisectors to find missing measures.

Angle Bisector: is a \qquad that divides an angle into two angles that are \qquad

$\overrightarrow{H K}$ bisects $\angle G H J$. Find $m \angle G H K$ and $m \angle K H J$.
a) $m \angle G H K=$ \qquad
b) $m \angle G H K=$ \qquad
c) $m \angle G H K=$ \qquad
$m \angle K H J=$ \qquad
$m \angle K H J=$ \qquad
$m \angle K H J=$ \qquad

$\overrightarrow{Q S}$ bisects $\angle P Q R$. Find $m \angle S Q P$ and $m \angle P Q R$. Then tell whether $\angle P Q R$ is acute, right, obtuse, or straight.
a) $m \angle S Q P=$
b) $m \angle S Q P=$
c) $m \angle S Q P=$ \qquad
$m \angle P Q R=$ \qquad
$m \angle P Q R=$ \qquad
$m \angle P Q R=$ \qquad

Classify: \qquad Classify: \qquad Classify: \qquad

$\overrightarrow{B D}$ bisects $\angle A B C$. Find the value of x and then the measure of each missing angle.
a) $x=$ \qquad $m \angle A B D=$ \qquad b) $\mathrm{x}=\ldots \mathrm{m} \angle D B C=$ \qquad

$$
m \angle A B C=
$$ $m \angle A B D=$ \qquad $m \angle A B C=$ \qquad

Draw a picture of the situation, then find the indicated information.
a) If $\overrightarrow{\mathrm{SH}}$ is the bisector of $\angle \mathrm{TSR}$ and $\mathrm{m} \angle \mathrm{TSR}=62^{\circ}$, then what is $\mathrm{m} \angle \mathrm{TSH}$?
b) $\overrightarrow{\mathrm{RT}}$ is the bisector of $\angle \mathrm{ARC}$

If $\mathrm{m} \angle \mathrm{ART}=\left(\frac{1}{2} \mathrm{x}+24\right)^{\circ}$,
and $\mathrm{m} \angle \mathrm{TRC}=(3 \mathrm{x}-46)^{\circ}$,
then find x and $\mathrm{m} \angle \mathrm{ART}$.
c) $\overrightarrow{\mathrm{EF}}$ is the bisector of $\angle \mathrm{AEC}$.

If $\mathrm{m} \angle \mathrm{AEF}=(5 \mathrm{x}-17)^{\circ}$, and $\mathrm{m} \angle \mathrm{FEC}=(3 \mathrm{x}+13)^{\circ}$, then find x and $\mathrm{m} \angle \mathrm{FEC}$.

2.3 Complementary and Supplementary Angles

Goal: Find measures of complementary and supplementary angles.

Angle Pairs	
Complementary Angles: two angles whose sum of their measures is \qquad	
Supplementary Angles: two angles whose sum of their measures is \qquad	
Adjacent Angles: two angles that share a common vertex and \qquad , but have no common interior points.	

Think of a way to help you remember the difference between complementary and supplementary!

State whether the angles are complementary, supplementary, or neither.
a) \qquad
b) \qquad
c) \qquad
-

d) \qquad
e) \qquad
f) \qquad

Tell whether the numbered angles are adjacent or nonadjacent.
a) \qquad
b) \qquad
c) \qquad

d) \qquad

e) \qquad

Find the complement or supplement of each angle.
a) $m \angle A=47^{\circ}$
c) $m \angle C=133^{\circ}$

Complement of $\angle A=$ \qquad Supplement of $\angle C=$ \qquad
b) $m \angle B=68^{\circ}$
d) $m \angle D=13^{\circ}$

Complement of $\angle B=$ \qquad Supplement of $\angle D=$ \qquad
$\angle 7$ and $\angle 8$ are supplementary, and $\angle 8$ and $\angle 9$ are supplementary. Name a pair of congruent angles. Explain your reasoning.

Solution

$\angle 7$ and $\angle 9$ are both \qquad to $\angle 8$. So, from the Congruent \qquad Theorem, it is true that \angle \qquad $\cong \angle$ \qquad .

2.4 Vertical Angles

Goal: Find measures of angles formed by intersecting lines.

Vertical Angles: two angles that are not by two ___ and their sides are formed	
Linear Pair: two ___ angles whose noncommon sides are on the same	

Determine whether the labeled angles are vertical angles, a linear pair, or neither.
a)

b) \qquad
c) \qquad
-

d) \qquad
e) \qquad
f)

Linear Pair Postulate: If two angles form a linear pair, then they are \qquad	
Vertical Angles Theorem: Vertical angles are	
\cong \qquad and \qquad \cong \qquad	

Use the linear pair postulate and the vertical angles theorem to find the value of the variable.
a) Type of Angles: \qquad $x=$ \qquad
b) Type of Angles: \qquad $x=$

\qquad

c) Type of Angles: \qquad $\mathrm{z}=$ \qquad d) Type of Angles: \qquad $x=$ \qquad

e) Type of Angles: \qquad $t=$ \qquad f) Type of Angles: \qquad $r=$

Find the measure of each missing angle.

2.5 If-Then Statements and Deductive Reasoning

Goal: Use if-then statements and apply laws of logic.

If-then statement: a statement with two parts: an \qquad part that contains the hypothesis and a
\qquad part that contains the conclusion.

Hypothesis: the \qquad part of an if-then statement

Conclusion: the \qquad part of an if then statement

For each statement, underline the hypothesis and circle the conclusion.
a) If you attend T. F. Riggs High School, then your mascot is the Governors.
b) If it is raining outside, then there are clouds in the sky.
c) If you are in Basic Geometry, then Ms. Blaseg and Ms. Vockrodt are your teachers.

Rewrite each statement as an if-then statement.

a) I will buy the CD if it costs less than $\$ 15$.
b) A right angle measures 90 degrees.
c) All games involving zombies are fun to play.
\qquad
d) I will give my dog a treat if she behaves.

Follow up: In a sentence that contains a hypothesis and a conclusion, is the conclusion always stated at the end of the sentence? Explain.

Law of Detachment: If the hypothesis of a true ifthen statement is true, then the conclusion is	Law of Syllogism: If the following two statements are true, then the third statement is
	If statement \bar{p}, then statement q. If statement q, then statement r. If these statements are true, If statement p, then statement r. \longleftarrow then this statement is true.

What can you conclude from the following statements?

a) If you wash the cotton t-shirt in hot water, then it will shrink. You wash the cotton t-shirt in hot water.

Conclusion: \qquad
b) If x has a value of 7 , then $2 x-3$ has a value of 11 . The value of x is 7 .

Conclusion: \qquad
c) If you study at least 2 hours for the test, then you will pass the test. You study 3 hours for the test.

Conclusion: \qquad
d) If you participate in class every day Ms. Blaseg will be happy. You participate in class.

Conclusion: \qquad

Use the Law of Syllogism to write a statement that follows the pair of true statements.

a) If I throw the stick, then my dog will go fetch it.

If my dog fetches the stick, then my dog will bring it back to me.

Conclusion: \qquad
b) If the juice is knocked over, then it will spill on the carpet.

If the juice spills on the carpet, then it will stain the carpet.

Conclusion: \qquad
c) If you give a mouse a cookie, he's going to ask for a glass of milk. If you give him the milk, he'll probably ask for a straw.

Conclusion: \qquad

2.6 Properties of Equality and Congruence

Goal: Use properties of equality and congruence.

Properties of Equality and Congruence		
Reflexive Property	Equality $\begin{aligned} & A B=A B \\ & m \angle A= \end{aligned}$ \qquad	Congruence $\begin{aligned} & \overline{A B} \cong \overline{A B} \\ & \angle A \cong \end{aligned}$
Symmetric Property	Equality If $A B=C D$, then $C D=A B$. If $m \angle A=m \angle B$, then	Congruence If $\overline{A B} \cong \overline{C D}$, and $\overline{C D} \cong \overline{A B}$. If $\angle A \cong \angle B$, then \qquad
Transitive Property	Equality If $A B=C D$ and $C D=E F$, then $A B=E F$. If $m \angle A=m \angle B$ and $m \angle B=m \angle C$, then \qquad	Congruence If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$. If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then \qquad

Name the property that each statement illustrates.
a) \qquad $D E=D E$
b) \qquad If $\angle P \cong \angle Q$ and $\angle Q \cong \angle R$, then $\angle P \cong \angle R$.
c) \qquad $\angle P \cong \angle P$
d) \qquad . If $m \angle S=m \angle T$, then $m \angle T=m \angle S$.
e) \qquad If $D F=F G$ and $F G=G H$, then $D F=G H$.
f) \qquad If $\angle G \cong \angle Z$, then $\angle Z \cong \angle G$.

Use the property to complete the statement.
Reflexive Property of Equality: $m \angle A=$ \qquad —.
Symmetric Property of Equality: If $E F=G H$, then \qquad $=$ \qquad .
Transitive Property of Equality: If $m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$, then \qquad $=$ \qquad -.

Reflexive Property of Congruence: \qquad $\cong \overline{K L}$

Symmetric Property of Congruence: If $\angle 5 \cong \angle 6$, then \qquad \cong \qquad .
Transitive Property of Congruence: If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then \qquad \cong \qquad .

Properties of Equality		
Addition Property	Adding a number to each side of an equation produces an equivalent equation	Example: If $x-3=7$, then $x=10$
Subtraction Property	Subtracting a number to each side of an equation produces an equivalent equation	Example: If $y+5=11$, then $y=6$
Multiplication Property	Multiplying a number to each side of an equation by the same nonzero number produces an equivalent equation	Example: If $1 / 4 x=6$, then $x=24$
Division Property	Dividing a number to each side of an equation by the same nonzero number produces an equivalent equation	Example: If $8 x=16$, then $x=2$
Substitution Property	Substituting a number to each side of an equation produces an equivalent equation	Example: If $x=7$, then $2 x+4=$ $2(7)+4=18$

Name the property that each statement illustrates.
a) \qquad If $m \angle 1=m \angle 4$, then $m \angle 1-30^{\circ}=m \angle 4-30^{\circ}$.
b) \qquad If $L M=N P$, then $2 \cdot L M=2 \cdot N P$.
c) \qquad If $X Y=E F$, then $X Y+7=E F+7$.
d) \qquad If $m \angle A=m \angle B$, then $\frac{m \angle A}{3}=\frac{m \angle B}{3}$.
e) \qquad If $C D=4$, then $C D+12=4+12$.
f) \qquad If $m \angle S=45^{\circ}$, then $m \angle S+35^{\circ}=80^{\circ}$.
g) \qquad If $m \angle K=9^{\circ}$, then $3(m \angle K)=27^{\circ}$.
h) \qquad If $A B=12$, then $2 \cdot A B+3=2(12)+3$.

