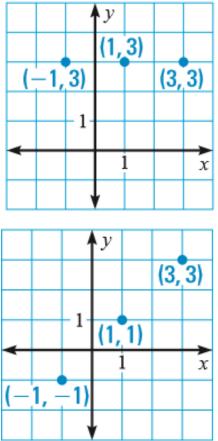

1.1 Finding and Describing Patterns

Goal: Find patterns and use them to make predictions.

Sketch the next figure that you expect in the pattern.

c)	4, 12, 36, 108,,,
Descrip	otion of Pattern:
d)	5, 6, 8, 11, 15, 20,,,
Descrip	otion of Pattern:
e)	9, 4, -1, -6,,
Descrip	otion of Pattern:
f)	-9, 3, -1, 1/3,,
Descrip	otion of Pattern:

Find a pattern in the coordinates of the points. Then write the coordinates of another point in the pattern. Pattern:


x's: ______ y's: _____

Coordinates: _____

Pattern:

x's: _		 	
y's: _			

Coordinates: _____

1.2 Inductive Reasoning

Goal: Use inductive reasoning to make conjectures.

Conjecture: an unproven statement that is based on ______

Inductive Reasoning: looking for patterns and making _____

Complete each conjecture by first writing several examples and then completing the statement.

a) Conjecture: The sum of any two odd numbers is ______.

Examples:

b) Conjecture: The product of any two odd numbers is ______.

Examples:

c) Conjecture: The product of a positive number and a negative number is ______.

Examples:

d) Conjecture: The difference of any two odd numbers is ______.

Examples:

e) Conjecture: The square of an even number is ______.

Examples:

Just because something is true from several examples does not prove that it is true in general. To prove that a

conjecture is true, you need to prove it true in ______ cases. A conjecture is considered

_____ if it is not always true.

<u>Counterexample</u>: an example that shows that a conjecture is ______.

Show each conjecture is false by finding a counterexample.

a) Conjecture: All birds can fly.

Counterexample: _____

b) Conjecture: All high schools are in school at 9:00 AM.

Counterexample: _____

c) Conjecture: The sum of two numbers is always greater than the larger of the two numbers.

Counterexample: _____

d) Conjecture: All shapes with four sides the same length are squares.

Counterexample: _____

e) Conjecture: If the product of two numbers is even, then the numbers must be even.

Counterexample: _____

f) Conjecture: If a shape has two sides the same length, it must be a rectangle.

Counterexample: _____

g) Conjecture: All rectangles with a perimeter of 20 feet have the same area.

Counterexample: _____

1.3 Points, Lines, and Planes

Goal: Use postulates and undefined terms.

Undefined Terms in Geometry				
Term	Definition	Picture	Label/Name	
Point	dimension			
Line	dimension			
	-Extends without end in			
	directions			
Plane	dimensions			
	-Extends without end in			
	directions			

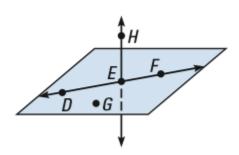
Undefined terms: terms that cannot be mathematically defined using other ______

Postulate: statements that are ______ without further justification.

	Postulates 1 and 2				
	Words	Picture	Symbols		
Postulate 1	Through any two points		Line passes		
	there is exactly		through points		
	line		and		
	-				
Postulate 2	Through any three points		Plane passes		
	not on a line there is		through points,		
	exactly plane		, and		

Use the diagram at the right.

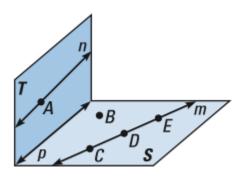
- a) Name three points: ______
- b) Name two lines: _____
- c) Name two planes: _____


Collinear points: points that lie on the same _____

Coplanar points: points that lie on the same ______

Coplanar lines: lines that lie on the same ______

Use the diagram at the right.


- a) Name three points that are collinear: ______
- b) Name four points that are coplanar: ______
- c) Name three points that are not collinear:

т

• F

Use the diagram at the right.

	Definition	Picture	Symbols
Line	endpoints		
Segment	endpoints		
Ray	endpoints		

	Picture	Line, Segment, or Ray?	How many arrowheads?	Name any endpoints.
Ĵĸ				
K L				
ĪJ				
ĪK				

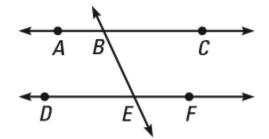
Draw \overrightarrow{AB} and \overrightarrow{AC} . Are the lines the same? Explain.	A •	<i>В</i> •	<i>C</i> •
Draw \overline{AC} and \overline{BD} . Are the segments the same? Explain.		۰D	
Draw \overrightarrow{CA} and \overrightarrow{CB} . Are the rays the same	ne? Expla	in.	

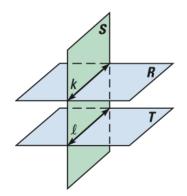
1.4 Sketching Intersections

Goal: Sketch simple figures and their intersections

Intersect: When figures have any points _____

Intersection point: the point or points that all the figures have ______

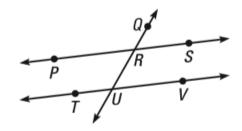

	Postul	ates 3 and 4	
	Words	Picture	Symbols
Postulate 3	If two lines intersect, then		Lines and
	their intersection is a		intersect at point
Postulate 4	If two planes intersect,		Planes and
	then their intersection is a		intersect at
			line

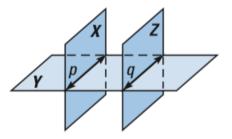

Use the diagram at the right.

- a) Name the intersection of \overrightarrow{AC} and \overrightarrow{BE} : _____
- b) Name the intersection of \overrightarrow{BE} and \overrightarrow{DF} : _____
- c) Name the intersection of \overrightarrow{AC} and \overrightarrow{DF} : _____

Use the diagram at the right.

- a) Name the intersection of planes *S* and *R*: ______
- b) Name the intersection of planes R and T: _____
- c) Name the intersection of planes T and S: _____

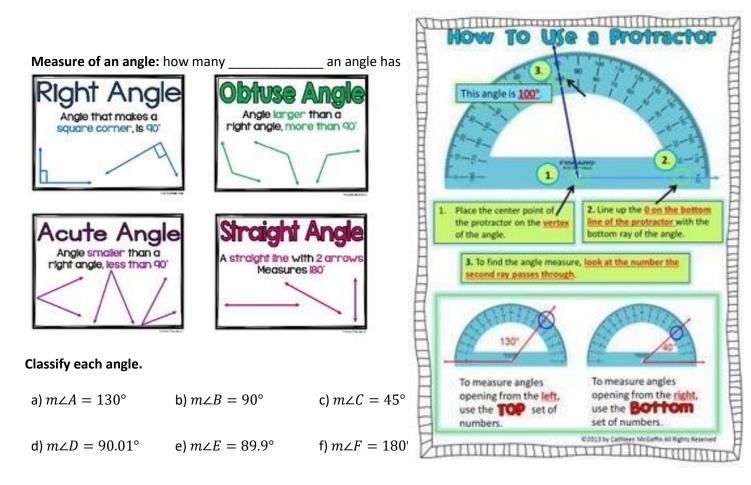



Use the diagram at the right.

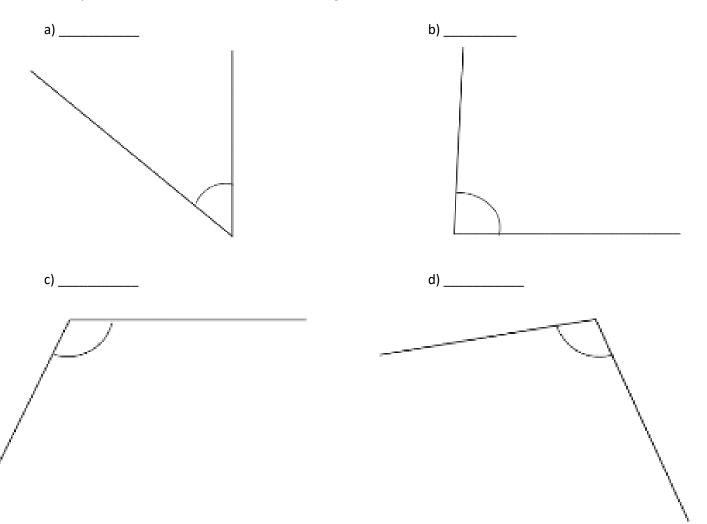
- a) Name the intersection of \overrightarrow{PS} and \overrightarrow{QR} : ______
- b) Name the intersection of \overrightarrow{TV} and \overrightarrow{QU} : _____
- c) Name the intersection of \overrightarrow{PS} and \overrightarrow{UV} : ______

Use the diagram at the right.

- a) Name the intersection of planes X and Y: _____
- b) Name the intersection of planes Y and Z: ______
- c) Name the intersection of planes *Z* and *X*: ______



Sketching Lir	Sketching Lines and Planes					
a) A line that is in a plane	b) A line that does not intersect the plane					
c) A line that intersects the plane at a point	d) Two planes that intersect in a line					
e) Three lines that lie in a plane	f) Two lines that intersect a plane at the same point					
g) Two planes that do not intersect	h) Three lines that intersect in a point					


1.4.5 Measuring Segments and Angles

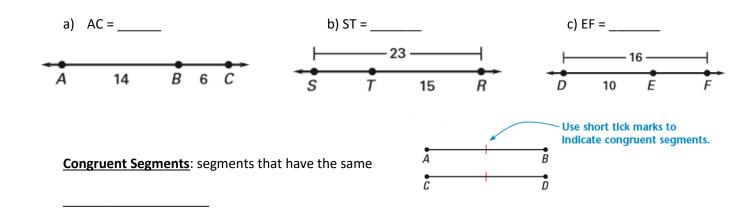
Goal: Use a ruler to measure segments and a protractor to measure angles.

On a ruler there are	tick marks between	
each inch . Always write the f		1/16 3/16 5/16 7/16 9/16 11/16 13/16 15/16 1/8 3/8 5/8 7/8 1/4 3/4 1/2
On a ruler there are each centimeter . You can wr 	ite your answer as a	0 1' 10 Millimeters • 1cm • 0.5cm • 10 Lines per centimeter 0 CM 1
a) Inches:	asure each segment in inches an	d in centimeters. Label all answers.
Centimeters:		
b) Inches: Centimeters:		Ср ••
c) Inches: Centimeters:	P	Q •
d) Inches:	, <u>S</u>	T
Centimeters: e) Inches: Centimeters:	Ĺ	
		M 10

Use a protractor to find the measure of each angle.

1

1.5 Segments and Their Measures

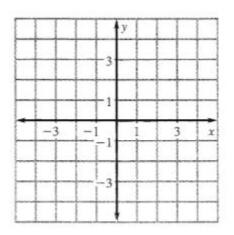

Goal: Use the segment addition postulate to find lengths.

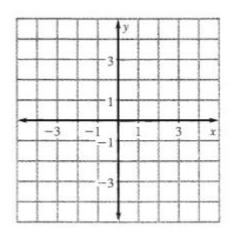
Coordinate: the real	that corresponds to a	na	imes of poi	ints R	
point on a number line				×x2	→
Distance: the of the		coor	dinates of	points	
difference of the coordinates A and B writte	n as	A	AB	B X2	→
Length: the same as the	_	A	$B = x_2 - x_1 $		

Between: when ______ coordinates lie on a line, one of them is between the other two

	If B is between A and C, then	
Segment Addition Postulate	If AC = AB + BC, then B is between and	$AC \longrightarrow AC \longrightarrow AC \longrightarrow AB \longrightarrow BC \longrightarrow BC \longrightarrow BC \longrightarrow BC \longrightarrow $

Draw a sketch of the three collinear points. Then write the Segment Addition Postulate for the points. a) X is between Y and Z b) A is between R and D




Find each length.

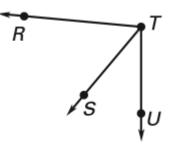
	Symbols	
The length of AB is	to the length of CD	
Segment <i>AB</i> is	to segment CD	

Plot the points in the coordinate plane. Then decide whether AB and CD are congruent.

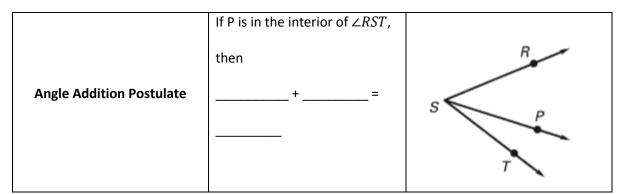
a) A(-2, 3) B(3, 3) C(-3, 4) D(-3, -1)

b) A(0, 5) B(0, -1) C(5, 0) D(-1, 0)

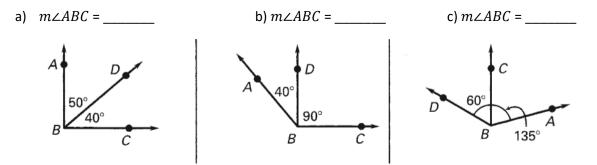
Use the Segment Addition Postulate to write and solve an equation for x. Then find the lengths.


	~		QR =
--	---	--	------

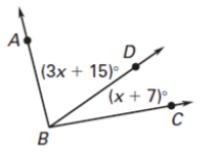
b) Let PR = 26 Equation:		_	. • P	2 <i>x</i> -13	Q	R
x = PQ	=	QR =				
c) Let PR = 40 Equation:			• P	4 <i>x</i> -1	Q 3 <i>x</i> -1	● R
x = PQ	=	QR =				
d) Let RG = 7x + 3, GQ Equation:	e = 3x + 13, and RQ =		ue of x and t	he indicated le	ngths. G	• Q
x =	RG =	GQ =				


1.6 Angles and Their Measures

A		Goal: Measure and cla		gle measures.	A
Angle:	two rays that have	the same			
Sides:	the two	of the angle			
<u>Vertex</u>	: the	of the angle			\rightarrow
Name	the angle, vertex, a	nd sides of each angle. The	n use a protractor to	B find the measure.	F∮
a)	Angle names:				1
	Vertex:				
	Sides:				G
	Measure:			F	
b)	Angle names:				1
	Vertex:				A
	Sides:				
	Measure:			B	C
c)	Angle names:				
	Vertex:			、 、	
	Sides:			D	
	Measure:				
d)	Angle names:				E F
	Vertex:				
	Sides:				• •
	Measure:			A	в с

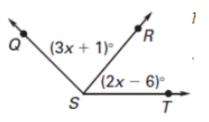

a) Name all the angles in the figure.

b) Why should you not name any of the angles <T?


Find the measure of $\angle ABC$.

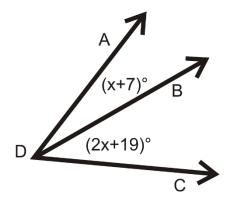
Use the angle addition postulate to write and solve an equation for x. Find the angle measures.

a) Let $m \angle ABC = 94^{\circ}$


Equation: _____

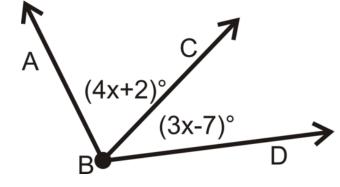
 $\mathbf{x} = \underline{\qquad} m \angle ABD = \underline{\qquad} m \angle DBC = \underline{\qquad}$

b)	Let	m∠	QST	=	135 °
----	-----	----	-----	---	--------------


Equation: _____

 $x = \underline{\qquad} m \angle QSR = \underline{\qquad} m \angle RST = \underline{\qquad}$

c) Let $m \angle ADC = 71^{\circ}$


Equation: ______

 $x = \underline{\qquad} m \angle ADB = \underline{\qquad} m \angle BDC = \underline{\qquad}$

d) Let $m \angle ABD = 121^{\circ}$

Equation: _____

 $x = \underline{\qquad} m \angle ABC = \underline{\qquad} m \angle CBD = \underline{\qquad}$